China Hot selling 50-1500 m3/min Industrial Heavy Duty Multi-Stage AC Power Oilless Oil Free High Speed Turbo Centrifugal  Air Compressor air compressor portable

Product Description

Centrifugal Compressor Core Technology

Performance advantages of centrifugal Compressor:

Customized coolers are suitable for various working conditions and they are easy for cleaning and maintenance.

Three operating modes can be realized by the control system: full constant pressure mode, automatic dual mode and self-balancing mode. It can intelligently adjust according to the actual operation conditions and gas demand to ensure that the equipment is always in a state of high efficiency, energy saving and stable operation.

Anti-surge control system avoids costly damage to the machine and production loss due to process interruption.
Variable speed drive solution reduces the sudden current demand during the starting process of the centrifugal compressors. This avoids the voltage dips and other undesirable effects, especially when your power supply is limited.

The centrifugal compressors were granted certificates of conformity with compressed air purity class for total oil 0, tested according to ISO 8573-1, which prevents oil from polluting your process system.

Efficient impeller and stage design for excellent specific energy requirement (SER). It helps lower your electric bills significantly and has a positive impact on the environment.

Model Maximum Capacity FAD* (m3/min) Installed motor power Dimensions(mm) Weight
working pressure(barg) kW hp L W H kg
DAC50 0.6-8 25-48 132-263 175-350 2650 1650 1850 3860
DAC80 0.6-10 40-85 225-450 300-600 3350 1860 2150 6500
DAC120 0.6-13 75-123 400-630 535-850 3850 2100 2250 8250
DAC200 0.6-13 115-208 618-1120 830-1120 4250 2150 2350 11500
DAC250 0.6-20 175-260 925-1375 1250-1850 4500 2250 2380 16000
DAC300 0.6-25 228-310 1225-1600 1650-2200 4650 2250 2450 17500
DAC350 0.6-25 283-360 1500-1850 2000-2500 4850 2250 2500 18500
DAC450 0.6-25 350-460 1800-2350 2400-3150 5250 2300 2950 21500
DAC550 0.6-25 430-586 2250-3150 3000-4200 6250 4550 3550 41500
DAC1000 0.6-25 550-1015 2850-5000 3800-5750 8350 3850 3850 45500
DAC1500 0.6-25 920-1650 4500-7850 6000-10500 12500 5150 4550 62500
DAC3000 0.6-25 1680-3000 7980-14500 10800-20000 14500 5850 5350 78500
Turbocharger series
Model Inlet pressure(barg) Capacity FAD* (m3/min) Outlet pressure(barg) Installed Dimensions(mm) Weight
power(kW) L W H kg
DAC550-HB 0.3-1.0 436-586 16-50 1214-1758 5250 3250 2850 25000
DAC1000-HB 0.3-1.0 550-1571 16-50 1925-3570 5850 3550 3150 32500
DAC1500-HB 0.3-1.0 920-1650 16-50 3220-5775 6500 4350 3550 42500
DAC3000-HB 0.3-1.0 1680-3000 16-50 5880-10500 7500 5350 4250 58500

Q : How Many Staff Are There In The DENAIR Group? 
A : About 588.

Q : How Many Employees Do You Have In Your Factory?
A : About 100.

Q : How Many Staff Do You Have In your International Department?
A : 40.We Have Sales Representatives Who Can Speak English, French, Russian, Spanish, and Arabic.

Q : What’s your factory’s production capacity?
A : About 500 units per month.

Q : What’s Our Factory’s Production Capacity?
A : About 500 Units Per Month

Q : What’s The Annual Sales Volume Of The DENAIR Group?
A : About USD 52,000,000.00 In 2017.With An Annual Growth Rate Of 33%.

Q : What’s The Annual Sales Volume Of Your International Department?
A : About USD 16,000,000.00 In 2017, 30% Of The Group Annual Sales.

Q:How Many Units Does DENAIR Export In A Month?
A: About 80 To 100 Units.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Mute: Mute
Impeller: Closed
Cooling System: Water Cooling


.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Is the Role of Air Dryers in Oil-Free Air Compressor Systems?

Air dryers play a crucial role in oil-free air compressor systems by removing moisture from the compressed air, ensuring dry and moisture-free output. Here’s a detailed explanation of the role of air dryers in oil-free air compressor systems:

1. Moisture Removal:

One of the primary functions of air dryers in oil-free air compressor systems is to remove moisture from the compressed air. During the compression process, atmospheric air is compressed, leading to an increase in temperature. As the compressed air cools down, the water vapor present in the air can condense, resulting in the formation of liquid water. Moisture in the compressed air can cause a range of issues, including corrosion, damage to pneumatic equipment, reduced efficiency in downstream processes, and contamination of products or processes. Air dryers effectively remove this moisture, ensuring that the compressed air remains dry and free from water vapor.

2. Condensation Prevention:

Air dryers also help prevent condensation from occurring within the compressed air system. By removing moisture from the compressed air, air dryers minimize the chances of condensation forming in the compressed air lines, storage tanks, and downstream equipment. Condensation can lead to the accumulation of water, which can cause blockages, corrosion, and other operational issues. Air dryers help maintain the integrity and reliability of the compressed air system by preventing condensation-related problems.

3. Protection of Equipment:

Moisture in the compressed air can be detrimental to pneumatic equipment and tools. Air dryers help protect this equipment by ensuring that the air supplied is dry and free from moisture. Dry air prevents corrosion of internal components, extends the lifespan of pneumatic tools, and helps maintain their optimal performance. By removing moisture, air dryers contribute to the overall reliability and efficiency of the oil-free air compressor system.

4. Purification of Compressed Air:

Air dryers also aid in the purification of compressed air by removing impurities and contaminants, including water vapor, oil droplets, and solid particles. While the primary purpose of air dryers is to remove moisture, they often incorporate additional filtration stages, such as coalescing filters or desiccant beds, to capture and remove other impurities. These filtration stages work in conjunction with the drying process to deliver clean, dry, and purified compressed air that meets the required air quality standards.

5. Optimal Performance:

Properly dried and moisture-free compressed air ensures optimal performance in various applications. In industries such as food and beverage, pharmaceuticals, electronics manufacturing, and painting, where air quality is critical, the use of air dryers is essential to meet specific air purity requirements. Dry compressed air enhances the efficiency and reliability of pneumatic systems, reducing the risk of malfunctions, downtime, and product contamination.

It’s important to note that different types of air dryers are available for oil-free air compressor systems, including refrigerated dryers, desiccant dryers, and membrane dryers. Each type has its own operating principles and suitability for different applications. The selection of the appropriate air dryer depends on factors such as the required level of dryness, the volume of compressed air, operating conditions, and specific industry requirements.

By incorporating air dryers into oil-free air compressor systems, operators can achieve and maintain dry, moisture-free compressed air, ensuring the reliability, efficiency, and integrity of downstream processes and equipment.

air compressor

What Is the Role of Filtration in Maintaining Air Quality in Oil-Free Compressors?

Filtration plays a crucial role in maintaining air quality in oil-free compressors. Here’s a detailed explanation of the role of filtration and its importance in ensuring clean and contaminant-free compressed air:

1. Removing Solid Particles:

One of the primary functions of filtration in oil-free compressors is to remove solid particles from the compressed air. Ambient air contains various contaminants such as dust, dirt, pollen, and other particulates. These particles can potentially damage downstream equipment, clog pneumatic components, and compromise the quality of the compressed air. Filtration systems, typically consisting of pre-filters and main filters, are used to capture and remove these solid particles, preventing them from entering the compressed air system.

2. Protecting Equipment:

Filtration helps protect the equipment and components of the compressed air system, including valves, cylinders, pneumatic tools, and instruments. Solid particles present in the compressed air can cause abrasion, wear, and damage to these components, leading to decreased performance, increased maintenance, and potential system failures. By effectively removing solid particles, filtration ensures the longevity and reliability of the equipment, reducing the need for frequent repairs and replacements.

3. Preventing Contamination:

Oil-free compressors are designed to produce clean, oil-free compressed air. However, certain contaminants can still find their way into the compressed air system. Filtration plays a vital role in preventing contamination by removing substances such as oil aerosols, water vapor, and microorganisms. These contaminants can be introduced through ambient air or can result from the compression process itself. Proper filtration ensures that the compressed air remains free from these contaminants, meeting the required air quality standards for specific applications.

4. Achieving Air Purity:

Many applications require compressed air with specific purity levels. For instance, in industries like pharmaceuticals, food and beverage, electronics, and healthcare, high-quality compressed air is essential to prevent product contamination or ensure the safety of sensitive processes. Filtration, along with other air treatment components such as dryers and separators, helps achieve the desired air purity levels by removing particulates, moisture, oil, and other impurities. This ensures that the compressed air meets the required standards and complies with industry regulations.

5. Extending Maintenance Intervals:

Efficient filtration in oil-free compressors can contribute to extended maintenance intervals. By effectively capturing and removing contaminants, filtration reduces the accumulation of debris and deposits within the compressed air system. This, in turn, reduces the frequency of maintenance tasks such as cleaning, purging, and component replacements. Extended maintenance intervals not only save time and labor but also minimize system downtime and associated costs.

6. Preserving Product Quality:

In applications where compressed air comes into direct contact with products or processes, maintaining air quality is crucial to preserve product integrity and quality. Contaminated compressed air can introduce impurities, odors, or foreign substances that may adversely affect the final product. Filtration ensures that the compressed air remains clean and free from contaminants, safeguarding the quality, purity, and consistency of the end products.

Overall, filtration plays a vital role in maintaining air quality in oil-free compressors. By removing solid particles, preventing contamination, achieving air purity, protecting equipment, extending maintenance intervals, and preserving product quality, filtration systems contribute to the reliable and efficient operation of compressed air systems in various industries and applications.

air compressor

How Does an Oil-Free Air Compressor Work?

An oil-free air compressor, also known as an oilless air compressor, operates using alternative methods to achieve compression without the need for lubricating oil. These compressors employ various techniques to deliver clean, oil-free compressed air. Here’s a detailed explanation of how an oil-free air compressor works:

1. Dry Compression:

In oil-free air compressors, the compression chamber is designed to operate without any oil present. The compression process starts with the intake stroke, where ambient air is drawn into the compressor through an inlet valve. The air is then compressed in the compression chamber without any oil lubrication.

2. Friction Reduction:

Since there is no oil in the compression chamber, special measures are taken to reduce friction and wear between the moving parts. These measures include the use of specialized materials, coatings, and surface treatments on the compressor components. These friction-reducing techniques minimize the need for lubrication and allow for efficient compression.

3. Piston Rings and Seals:

Oil-free compressors utilize advanced piston rings and seals to provide effective sealing without the need for oil lubrication. These rings and seals are designed to reduce internal leakage and ensure efficient compression. They help maintain the compression efficiency by minimizing air leakage during the compression process.

4. Cooling Mechanisms:

Oil-free air compressors often incorporate cooling mechanisms to dissipate the heat generated during compression. This helps prevent overheating and ensures the compressor operates within acceptable temperature limits. Common cooling methods include water cooling and air cooling. Water-cooled compressors use a water jacket or a separate cooling circuit to remove heat, while air-cooled compressors rely on fans and heat sinks to cool the compressor.

5. Filtration:

Oil-free compressors typically incorporate effective air filtration systems to remove contaminants, such as dust, particles, and moisture, from the intake air. These filtration systems ensure that the compressed air produced is clean and free from impurities. Depending on the application, additional filtration equipment, such as coalescing filters or activated carbon filters, may be employed to achieve specific air quality requirements.

6. Control and Safety Systems:

Oil-free air compressors are equipped with control and safety systems to monitor and regulate the compressor’s operation. These systems can include pressure switches, temperature sensors, safety valves, and control panels. They help maintain optimal operating conditions, protect the compressor from excessive pressures or temperatures, and provide safety features to prevent damage or accidents.

By employing these techniques and components, oil-free air compressors achieve compression without the need for lubricating oil. This results in clean, oil-free compressed air that is suitable for applications where oil contamination could be problematic, such as in industries like food processing, pharmaceuticals, electronics, and painting.

It’s important to note that the specific design and operation of oil-free air compressors may vary depending on the manufacturer and model. Therefore, it’s recommended to consult the manufacturer’s documentation and guidelines for detailed information on how a particular oil-free compressor works.

China Hot selling 50-1500 m3/min Industrial Heavy Duty Multi-Stage AC Power Oilless Oil Free High Speed Turbo Centrifugal  Air Compressor   air compressor portableChina Hot selling 50-1500 m3/min Industrial Heavy Duty Multi-Stage AC Power Oilless Oil Free High Speed Turbo Centrifugal  Air Compressor   air compressor portable
editor by CX 2024-01-11

Recent Posts